
Prof. Reagan SDS/MTH 291: Lecture notes September 18, 2018

Agenda

1. Transformations

2. Log Coefficients

Transformations Tukey’s Bulging Rule is a systematic approach for transforming variables. The
idea is to move up or down the “ladder” in the direction indicated in the diagram.
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Transformations lab We’ll go through the lab together. Most of the code isn’t stuff you will
need to know, but here are a few pieces that might be useful.

Rand = Rand %>%

mutate(y_new = log(y))

xyplot(y_new ~ x, data=Rand)

require(manipulate)

manipulate(

with(Rand, tukeyPlot(x, y, q.y))

, q.y = slider(-3, 3, step=0.25, initial=1)

)

require(Stat2Data)

data(SpeciesArea)

xyplot(Species ~ Area, data=SpeciesArea)

manipulate(

with(SpeciesArea, tukeyPlot(Area, Species, q.y, q.x))

, q.y = slider(-3, 3, step=0.25, initial=1)

, q.x = slider(-3, 3, step=0.25, initial=1)

)

xyplot(log(Species) ~ log(Area), data=SpeciesArea)

Interpreting log coefficients There are two commonly-used logs: log base 10, and natural log
(base e). The book likes log base 10, but in this class we will be using natural log.

Some of the datasets in the Stat2Data package have pre-tranformed variables, like the Caterpillars
data in the homework. Don’t use the LogMass variable, instead, either create your own new variable
using mutate() or just wrap the original variable name in log() in the model call.
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# install.packages("fueleconomy")

require(fueleconomy)

m1 <- lm(log(hwy)~displ, data=vehicles)

coef(m1)

## (Intercept) displ

## 3.5724757 -0.1332845

What is the equation of the line?

log(hwy) = 3.57− 0.133 ∗ displ

And our interpretation on the slope coefficient would be, for every one-litre increase in engine
displacement, we would expect to see a 13.3% decrease in highway mileage. We can begin to
transform back into the original data space.

log(hwy) = 3.57− 0.133 ∗ displ
elog(hwy) = e3.57−0.133∗displ

hwy =
e3.57

e0.133∗displ
=

35.52

e0.133∗displ

Lets plug some numbers in for concreteness. If we plug in displ=4, hwy = 35.52
1.70 = 20.89, and

with displ=5 (a one-litre increase) hwy = 35.5
1.94 = 18.28

Or, in R for more precision

exp(3.5724757)/(exp(0.1332845*4))

exp(3.5724757)/(exp(0.1332845*5))

20.8914 * 0.1332845

20.8914 - 2.7845

18.28 is approximately a 13.3% decrease from 20.89. Convenient, no?
What if we had done this with log10?

m2 <- lm(log10(hwy)~displ, data=vehicles)

coef(m2)

## (Intercept) displ

## 1.55150650 -0.05788473

log10(hwy) = 1.55− 0.058 ∗ displ
10log10(hwy) = 101.55−0.058∗displ

hwy =
101.55

100.058∗displ
=

35.60

100.058∗displ

Plugging in displ = 4, hwy = 35.60
1.70 = 20.89, and displ = 5 hwy = 35.60

1.94 = 18.28
So, the predictions are the same. But, what of the coefficient interpretation? It’s not so simple

with log 10.


