
A Personal View

Rationale and resources for teaching the mathematical modeling of athletic
training and performance

David C. Clarke1 and Philip F. Skiba2

1Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; and 2College
of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom

Submitted 2 August 2011; accepted in final form 1 February 2013

Clarke DC, Skiba PF. Rationale and resources for teaching the mathe-
matical modeling of athletic training and performance. Adv Physiol Educ 37:
134–152, 2013; doi:10.1152/advan.00078.2011.—A number of profes-
sions rely on exercise prescription to improve health or athletic
performance, including coaching, fitness/personal training, rehabilita-
tion, and exercise physiology. It is therefore advisable that the pro-
fessionals involved learn the various tools available for designing
effective training programs. Mathematical modeling of athletic train-
ing and performance, which we henceforth call “performance model-
ing,” is one such tool. Two models, the critical power (CP) model and
the Banister impulse-response (IR) model, offer complementary in-
formation. The CP model describes the relationship between work
rates and the durations for which an individual can sustain them
during constant-work-rate or intermittent exercise. The IR model
describes the dynamics by which an individual’s performance capac-
ity changes over time as a function of training. Both models elegantly
abstract the underlying physiology, and both can accurately fit per-
formance data, such that educating exercise practitioners in the sci-
ence of performance modeling offers both pedagogical and practical
benefits. In addition, performance modeling offers an avenue for
introducing mathematical modeling skills to exercise physiology re-
searchers. A principal limitation to the adoption of performance
modeling is a lack of education. The goal of this report is therefore to
encourage educators of exercise physiology practitioners and re-
searchers to incorporate the science of performance modeling in their
curricula and to serve as a resource to support this effort. The
resources include a comprehensive review of the concepts associated
with the development and use of the models, software to enable
hands-on computer exercises, and strategies for teaching the models to
different audiences.

coaching education; physical fitness; critical power model; Banister
impulse-response model; exercise physiology

EXERCISE PRESCRIPTION is central to a number of professions,
including those involving health and fitness training, occupa-
tional health and safety, rehabilitation from disease or injury,
and sport performance. The goal of exercise prescription is to
restore or improve an individual’s functional capacity to a level
commensurate with healthy living or with his or her fitness or
athletic performance goals. In an effort to better understand
and optimize athletic performance, exercise physiologists have
developed mathematical models of athletic training and per-
formance. Two models in particular, the critical power (CP)
model and the Banister impulse-response (IR) model, which
we henceforth denote as “performance models,” are useful for
training planning, analysis, and optimization. These models
have been studied for decades, but they are starting to enjoy

popular use owing to the commercialization of portable exer-
cise monitoring devices such as power meters for bicycles and
global positioning system wristwatches as well as easy-to-use
computer software. Nowadays, the principal limiting factor in
the widespread use of these models is a lack of education.

In this report, we present performance modeling as a means
for addressing in part the curricular needs of exercise physiol-
ogy and its applied professions and to provide a resource for its
implementation. We begin by justifying the inclusion of these
models in the curricula of both applied exercise physiology
professionals (e.g., clinical exercise physiologists, personal
trainers, coaches, etc.) and research-focused exercise physiol-
ogists. We then provide the following educational resources:
1) lecture material in the form of comprehensive modular
reviews of the models, 2) suggested teaching strategies and
example conceptual questions, and 3) an annotated supplemen-
tal spreadsheet file featuring the computations for virtually all
of the figures presented in the text, which we intend to serve as
the basis for computer-based exercises.1 We have also exten-
sively referenced our report to facilitate supplementary reading
by those interested in learning more about the models.

Rationale for Teaching Performance Modeling to Applied
Exercise Physiology Practitioners

Professional health and fitness organizations, such as the
American College of Sports Medicine, and the sports science
community advocate evidence-based exercise prescription, in
which exercise programs are based on the current best avail-
able evidence, including peer-reviewed scientific studies and
professional reasoning (e.g., Refs. 2, 38, 59, 68, 82, and 93).
While evidence-based exercise prescription is a noble goal,
achieving it in practice is challenging. Collegiate strength and
conditioning coaches, for example, rely relatively little on the
scientific literature when devising their training programs (29).
Resistance to evidence-based practice stems partly from many
coaches and fitness professionals lacking the education to
critically evaluate the scientific literature (37). Figuring impor-
tantly, however, are the impediments that exist to translating
laboratory-based research, which is the principal source of
scientific evidence, into real-world practice (12, 68). Such
impediments include a dearth of longitudinal studies to guide
long-term training program designs (12) and difficulties with
comparing the efficacies of different interventions because
many training studies feature only a single experimental group
(68). In the study of athletes, interventions are often added on
top of their “normal training,” which often goes unreported
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and/or is poorly controlled during the study (68), as are each
subject’s training status at the beginning of the study and their
states of rest or freshness, nutrition, and hydration during the
performance tests (12, 68). Issues can also exist with the
subjects. Training studies often feature too few subjects to be
adequately statistically powered (68). Moreover, the subjects
that are included in the study may not be representative of the
population with which the practitioner works, in that studies
examining untrained subjects may not generalize to well-
trained athletes and vice versa.

Collectively, these deficiencies cause even the basic ele-
ments of training program design, such as volume, intensity,
and periodization, to remain controversial in the literature
(62, 68). Therefore, the scientific literature inadequately
addresses critical aspects of training planning such that
knowledge must be derived from other means. Such means
include anecdotes and experiences of other coaches or
trainers, the internet, textbooks, past experience, and trial
and error (29). None of these forms of knowledge pass
through the rigors of peer review such that their veracity is
less assured. Even if published studies were more easily
translated, their conclusions would still be based on aver-
aged data, such that an omnipresent obstacle to evidence-
based exercise prescription is the interindividual variability
with which people respond to exercise (101). The individ-
uality of the responses to exercise means that a training
program deemed optimal in a published study may not be
optimal for all individuals. Ultimately, therefore, exercise
prescription is a single-subject experiment whose optimiza-
tion requires trial and error.

We propose that performance models can address, in part,
the issues cited above and can help enable bonafide evidence-
based exercise prescription. Performance models elegantly
integrate the principles of training into coherent frameworks
that can be used as a basis for critically evaluating ideas about
training from scientific studies or from other sources of knowl-
edge. This feature would help address the lack of formal
education of many exercise practitioners. They can also serve
as conceptual guides for the basic elements of training program
design. The CP and IR models are especially useful for guiding
workout design and long-term training planning, respectively.
Both models can serve to optimize training programs for
individuals because their inputs are data collected from the
individual and their predictions are specific to the individual.
Given these benefits, we propose a renewed definition of
evidence-based exercise prescription in which a general pro-
gram is devised based on concepts and guidelines from peer-
reviewed published studies and is optimized based on data
systematically collected from the athlete or client and modeled
using performance models. Performance models therefore
serve as an avenue to guide professional reasoning and to
systematize the trial-and-error adjustments normally featured
in exercise prescription.

Rationale for Teaching Performance Modeling to Exercise
Physiology Researchers

Research-focused students of exercise physiology, reha-
bilitation science, and biomedical engineering stand to ben-
efit from learning performance modeling for several rea-
sons. First, performance models can serve as an avenue to

introduce students to the concepts and practice of mathe-
matical modeling. Mathematical modeling has a long tradi-
tion in exercise physiology, and the CP model and related
bioenergetic models have been used for decades to explain
world records and performance as a function of time (13,
74). Mathematical models continue to inform many of the
subdisciplines of exercise physiology, including the bio-
chemistry of muscle metabolism (e.g., Refs. 27 and 60),
cardiovascular regulation (e.g., Refs. 41 and 58), O2 trans-
port (e.g., Ref. 105), endocrine function (e.g., Refs. 55 and
109), and temperature regulation (e.g., Ref. 102). Mathe-
matical models are helpful because they are an efficient and
effective means to express and evaluate hypotheses about
complex biological systems (61). We expect the use of
mathematical models in exercise physiology to increase in
the coming years because of the emergence of systems
biology (4, 46, 56), the increasingly sophisticated experi-
mental techniques that require modeling to exploit (28), and
the efforts to model human physiology (49). For these same
reasons, the life sciences are reconfiguring their curricula to
emphasize training in the quantitative and physical sciences
(81). Given these developments, we believe it is important
that exercise physiology researchers be sufficiently conver-
sant in mathematical modeling to appreciate, understand,
and substantively contribute to contemporary biomedical
science. Modeling depends on a core set of skills that
includes the abstraction of systems into mathematical equa-
tions, parameter fitting to data (optimization), statistical
evaluation of the model, simulations, and sensitivity analy-
ses. The performance modeling literature features each of
these tools (e.g., Refs. 33 and 43) such that performance
models can serve as a general introduction to modeling.

Performance models also serve as tools in basic and applied
research studies. For example, the IR model has been used to
investigate tapering and peaking phenomena in athletes (7, 80,
86, 98–100), training transfer effects between sports in triath-
letes (69), and psychological effects of training (70). Perfor-
mance models can also be used to address some of the
shortcomings of training studies noted above. For example,
quantifying a subject’s training before and during the study and
using this data to fit an IR model could be helpful for estimat-
ing the training and fatigue status of the subject throughout the
study. In cases in which the training loads were not strictly
controlled during the study, the IR model could be used to
account for the variance between subjects resulting from the
different training loads that might otherwise distort the effect
of the experimental treatment.

Finally, we believe that performance models could facilitate
closer ties between exercise physiology researchers and prac-
titioners. On the one hand, using the models encourages the
systematic collection of data by practitioners. Ideally, scientif-
ically minded practitioners may be motivated to share their
data with scientists, which could motivate formal studies. In
this way, researchers would have an important source of
problem finding and hypothesis generation. On the other hand,
the models can be implemented in the field such that they
facilitate the translation of scientific findings based on their use
into everyday practice. Either scenario could foster improved
evidence-based exercise prescription.
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Overview of Resources

Given the justification above, we encourage educators of
applied and research-focused exercise physiologists to incor-
porate performance modeling into their curricula. To facilitate
curricular implementation, we provide the following pedagog-
ical resources. First, we review the concepts underlying each
model in a modular lecture-friendly format. As part of this
review, we have cited numerous references, which we hope
will inspire supplemental reading. In particular, we direct the
reader to the following reviews: Refs. 5, 15, 23, 53, 75, and 97.
Third, we suggest pedagogical strategies for helping students
to achieve a working understanding of the models through the
use of active learning modalities such as Conceptests, computer-
based exercises, and laboratory sessions. Finally, we provide a
supplemental spreadsheet file containing the calculations that
underlie virtually all of the figures presented in the text. We
intend for this file to serve as a starting point for the computer-
based exercises.

Reading and Lecture Materials: Reviews of the CP
and IR models

For each model, we present the following subsections:
1) definition and history, 2) equation derivation and assump-
tions, 3) physiological basis, 4) practical implementation,
5) conceptual benefits and practical applications, 6) limita-
tions, and 7) modifications to the model.

The CP Model

Definition and history. The CP model describes the capacity
of an individual to sustain particular work rates as a function of
time (t). In this way, the model summarizes the relationship
between exercise intensity and duration for an individual. The
historical context of the CP model has been reviewed in detail
elsewhere (13, 53, 74). Briefly, a hyperbolic relationship be-
tween work rate and time was first suggested by Hill in 1925
(45), who plotted velocity versus time for world records in
swimming and running over various distances. Monod and
Scherrer observed a similar hyperbolic relationship in their
studies of work rate versus duration in skeletal muscle, and
they codified this relationship mathematically in 1965 (71).
They also defined the term “critical power” (CP) as the power
that can be sustained without fatigue for a very long time.
Another parameter in the relationship, the “anaerobic work
capacity” (AWC), nowadays called W=, represents the finite
amount of energy that is available for work above the critical
power. In the early 1980s, Moritani et al. (72) and Whipp et al.
(107) extended this concept to whole-body exercise by having
human subjects exercise to exhaustion at different work rates
on a cycle ergometer. Whereas Moritani et al. used the formal-
ism of Monod and Scherrer, Whipp et al. fit a linearized
two-parameter CP model to their data (107). Since those initial
studies, the CP model has been applied in a variety of settings
and to diverse types of subjects to evaluate muscular perfor-
mance (53). In particular, the model has been applied to several
sports in addition to cycling, including running (48), swimming
(106), and rowing (57).

Equation derivation and assumptions. Monod and Scherrer
devised the CP model by combining the equation for power
(power � work/time) with the observed linear relationship

between the amount of work and the duration of tests to
exhaustion performed at different work rates (71). The model
features two parameters, CP and work rate, which are related
according to the following equation:

W ' � �P � CP�t

where P is power and t is the duration for which that power was
sustained (107). Note that for sports such as swimming or
running, P and CP can be expressed as speed (S) and critical
speed (CS), respectively, and W= can be expressed as distance
(D=) rather than energy. Figure 1 shows the various forms of
the CP model.

Morton (74) catalogued the explicit and implicit assump-
tions of the CP model. The four principal assumptions are as
follows: 1) power output is a function of two energy sources,
aerobic and anaerobic; 2) aerobic energy is unlimited in ca-
pacity (i.e., one could exercise at an intensity at or below CP
for infinite duration) but is limited in the rate at which it can be
converted into work; 3) anaerobic energy is unlimited in the
rate of conversion (i.e., maximal power output or speed is
infinite) but is limited in capacity; and 4) exhaustion occurs
when W= is depleted (74). Each of these assumptions is phys-
iologically imprecise, but the model is nevertheless useful for
modeling the power-duration relationship for maximal exercise
lasting from �2 to �30 min. We discuss these and other
assumptions further below in Limitations.

Physiological basis. W= and CP are empirical parameters in
the CP model, but they both have bonafide physiological
interpretations. CP is the maximal work rate that can theoret-
ically be performed for infinite duration and corresponds to the
maximal aerobic power sustainable without drawing upon W=.
During exercise at power above CP, there is a clear and
progressive loss of metabolic homeostasis. At the systemic
level, maximal O2 consumption (V̇O2 max) and blood lactate
concentration attain steady values in response to exercise at or
below CP, whereas exercising above CP leads to the eventual
attainment of V̇O2 max and to inexorable blood lactate accumu-
lation (53). At the muscle level, Jones et al. (54) observed
steady levels of phosphocreatine (PCr), inorganic phosphate
(Pi), and pH through 20 min of leg extension exercise at a work
rate �10% below CP (Fig. 2). In contrast, a work rate 10%
above CP resulted in continually decreasing PCr and pH and
increasing Pi until exhaustion was reached at �14.7 min (Fig.
2) (54). Interestingly, Vanhatalo et al. (104) demonstrated that
different exercise intensities above CP resulted in identical PCr
levels at exhaustion.

Thus, CP appears to be a true physiological “threshold”
phenomenon that reflects metabolic disturbance in the working
muscle mass. It corresponds to a power output that exists
between those corresponding to the gas exchange threshold/
lactate threshold and V̇O2 max (53). Of these three parameters,
CP is most useful for predicting performance in endurance
events, such as time trial performance in cycling (95). It is
higher than the power corresponding to the maximal lactate
steady state (MLSS) but is also highly correlated to MLSS
(85), which is a predictor of performance for exercise lasting
30–60 min (14). However, CP is more accessibly estimated
than MLSS because its measurement does not require invasive
measurements.

The physiological basis of W= is less clear. Attempts to
specifically characterize the biochemical nature of W= have not
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been wholly satisfying, and it may not be possible to ascribe
W= to a single physiological variable (53). Indeed, the tradi-
tional interpretation of W= as a fixed anaerobic work capacity
seems dated in light of work that demonstrated decreased W=
during exposure to hyperoxic gas and an inverse relationship
between CP and W= (104). Other recent work correlated the
discharge of W= with the progressive rise of V̇O2 during interval
exercise (94) and the recovery of W= with the “slow” portion of
the recovery of V̇O2 (32). In reality, W= likely represents an
average or synthesis of changes in several important factors
(e.g., V̇O2, [K�], [Pi], [PCr], and ATP flux). Irrespective of the
physiology involved, W= is useful because it represents a
robust, performance-related parameter. It can be immediately
discharged and is replenished with a half-time of �3.5 min
during passive (e.g., unloaded cycling) recovery (32, 94).

Practical implementation. CP and W= are traditionally esti-
mated by having the athlete perform a series of maximal
constant-power trials of varied duration and fitting these data
using regression techniques (Fig. 3A and supplemental spread-
sheet file). Several practical issues arise with this approach,
including the choice of durations and the amount of rest
between tests. With regard to the latter, if the tests are per-

formed on the same day, then sufficient recovery is needed to
fully restore W=, which implies a lengthy session because W= is
recharged on the timescale of minutes (32, 94). These issues
can be resolved by performing the tests on different days.
However, doing so introduces the potential confound of train-
ing effects, and it can be cumbersome to perform the tests over
multiple days. Finally, regardless of the timing of the tests,
they should be performed in random order to promote statis-
tical independence between the data points and to eliminate
possible confounds introduced by the order of the tests.

To address the shortcomings of the multiple test approach, a
3-min maximal effort test has been developed to estimate CP
and W= (Fig. 3B) (103). In this test, the subject exercises
maximally from the start and maintains the effort throughout
the test; there is no pacing. This is a stringent requirement
because of the prolonged discomfort involved, such that the
subject must be highly motivated and should not receive
feedback during the test. The power output reaches a maximum
within a few seconds and then progressively declines as W=
depletes (Fig. 3B). By 2–3 min, W= depletes completely, and
power output stabilizes near CP. Therefore, CP is estimated
directly as the end-test power, which is calculated as the

Wlim = 185.4·Tlim

(P-185.4)·Tlim=358.7
P=CP =185.4 W

P=CP =185.4 W
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Fig. 1. Definitions and descriptions of the three principal forms of the two-parameter critical power model. The data are those of a representative subject (“M.P.”)
from the Moritani et al. (72) study. The units of energy are expressed as Watts·minute in keeping with the convention used by Moritani et al. (72), but W= is
usually expressed in units of joules. The gray-shaded regions on each plot indicate workloads less than critical power (CP), which implies that they would not
cause exhaustion (“fatigueless exercise”). A: the linear relationship between the total mechanical work done (Wlim) by synergistic muscle groups during constant
power trials and the durations of those trials (Tlim). The slopes of the dashed lines between the origin and the data points are equal to the mean power of the
trials. B: the hyperbolic form of the CP model, which is derived from the first equation by substituting power (P) � Tlim for Wlim. C: the linearized form of the
CP model, which is derived from the hyperbolic form by solving for P.
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average power in the final 30 s of the test, and W= is estimated
by integrating the area bounded by the power profile and a
horizontal line at end-test power (Fig. 3B). The validity of the
3-min all-out test has been supported by the high correlations
of CP and W= estimates from the 3-min test with those
independently estimated using the traditional protocol (103).
Due to the appeal of estimating CP model parameters in a
single test, the 3-min all-out test has attracted considerable
interest and has recently been adapted for running (84) and
rowing (25).

Conceptual benefits and practical applications. The CP
model provides a physiologically sound language to express
several of the qualitative sensations and observations of
coaches and athletes. First, athletes often speak of “blowing
up” or “dying” when exhaustion was reached. This sensation
can be more accurately stated as the depletion of W=. Second,

an observation that can be explained by the CP model is the
variable abilities of athletes to excel at shorter duration events
or to “go all day,” with the former likely exhibiting high W=
relative to their CP and the latter the opposite. Finally, athletes
and coaches often refer to a nebulous “threshold” to describe
the dividing line between intensities that can be sustained for a
long time versus those that cannot. Physiologically, this divid-
ing line is associated with CP or MLSS. However, the term
“threshold” is imprecise and is often confused with the lactate
threshold or with the anaerobic threshold. The lactate threshold
is defined as the intensity of exercise eliciting a 1-mM increase in
blood lactate above resting levels and is less than the intensity
corresponding to MLSS or the onset of blood lactate accumula-
tion. The anaerobic threshold is a misnomer because all energy
systems, whether reliant on O2 or not, contribute to the supply
of energy for exercise regardless of intensity. While the MLSS
terminology is accurate, thinking in terms of MLSS encourages
the erroneous notion that fatigue is caused by lactic acid when,
in fact, lactate is merely a byproduct of the biochemical
mechanisms responsible for energy supply during exercise. In
contrast, CP is a bonafide physiological threshold, and deple-

Fig. 3. Fitting the CP model. A: linear regression of power on duration is most
commonly done using the linearized form of the CP model, in which the line
of best fit is found through the method of least squares. B: CP parameters can
be validly estimated using a 3-min all-out test. The average power over the
final 30 s of the test (the “end-test” power) closely correlates with the CP
estimated using the standard protocol. The area bounded by the power-time
curve and the horizontal line defined by the end-test power is equal to W=. EP,
end-test power; WEP, work done above EP. [Data reprinted from Vanhatalo et
al. (103) with permission.]
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Fig. 2. The physiology of CP. Workloads slightly above CP lead to a loss of
metabolic homeostasis, whereas workloads slightly below CP do not. Phos-
phocreatine (PCr; A), Pi (B), and pH (C) concentrations in quadriceps muscle
were estimated using 31P magnetic resonance spectroscopy during dynamic
exercise above and below CP. Note the shorter duration of the �10% CP trial
in which exhaustion was achieved. [Data reprinted from Jones et al. (54) with
permission.]
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tion of W= corresponds to exhaustion and does not invoke
lactate as a causal mechanism in fatigue. Therefore, CP should
be the preferred terminology.

The CP model serves as a tool for devising optimal pacing
and tactical strategies in athletic competition. With regard to
pacing, theoretically optimal strategies have been proposed
using the CP model (53) that could inform sports such as
swimming or kayaking. Running road race tactics could also be
informed by the CP model. One could estimate the CS and D=
values of his or her competitors from recent results and use
these numbers to suggest the best tactical approach for any
particular athlete. For instance, a 10K runner with a superior
CS would be well advised to take the lead early, forcing his or
her competitors to expend their limited D= in pursuit. Likewise,
another athlete with a high D= but relatively limited CS would
be advised to get to the front and attempt to dictate a slower
pace, preserving his or her superior D= for a finishing sprint.
The CP model could also be used to adjust tactics during
competition. In cycling, for example, the decision to break
away is often made in a split second based on the race scenario
and on the amount of energy the athlete subjectively feels he or
she has remaining (in cycling parlance, “the number of
matches left to burn”), which is quantifiable as W=. Recently,

Skiba et al. (94) devised a model for the real-time monitoring
of W= during dynamic exercise (Fig. 4A). An exciting possi-
bility is to implement this model in the software of portable
monitoring devices such that the athlete could be continually
apprised of his or her W=.

The CP model provides a basis for prescribing individual-
ized workout intensities during training (53). Workout inten-
sities are commonly subdivided into discrete zones correspond-
ing to different physiological events or states (93). For the
subject whose data are shown in Fig. 3, we calculated his or her
power ranges corresponding to the different intensity zones
(Fig. 4B). Furthermore, a coach constructing a severe-intensity
interval workout could use the CP model for intermittent
exercise (which is described below in Modifications to the CP
model) to determine the interval durations and work and rest
intensities that would result in depleted W= at the end of the
session, thus optimizing the quality of the workout.

Limitations. As stated above, the CP model relies on four
principal assumptions that contravene known physiology.
Here, we address the inaccuracies of each assumption in the
same order that they were presented above:

1. Three energy-producing pathways contribute to power
output, namely, high-energy phosphate compounds, glycol-
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Fig. 4. Practical uses of the CP model. A: a model of W= kinetics enables continuous monitoring of energy reserves during dynamic exercise of variable intensity.
Shown is the power (monitored using a power meter) and modeled W= for a cyclist participating in a brisk group ride. The subject noted the sensation of
impending exhaustion as the W= balance remaining approached 0 J. In such a fashion, the model can be used to optimize pacing, race tactics, or interval workouts.
B: discrete training intensity zones defined as the percentage of CP or pace (93). These zones facilitate precise communication between the athlete and coach
with respect to workout expectations. The example numbers on the right were calculated from the subject’s CP from Fig. 3. The heart rate [HR; in beats/min
(bpm)] at CP was arbitrarily assumed. V̇O2 max, maximal O2 consumption; RPE, rating of perceived exertion; N/A, not applicable.
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ysis, and oxidative phosphorylation of multiple possible
substrates (74).

2. Power continues to decline below the asymptote defined
by CP given enough time. The applicability of the CP model
extends to exercise lasting from �2 to 30 min in most people
but up to 60 min in some individuals (47).

3. The maximum power that can be generated using W= is
finite because limits exist to how fast or powerfully one can
sprint (74).

4. W= need not be completely depleted at exhaustion (74). In
constant-power trials, the subject ceases exercise when he or
she cannot maintain the required power output. However, W=
may not be depleted because if the stipulated power output was
reduced to a level still above CP but less than the original
power, exercise could continue. Therefore, the maximal power
output is a function of the remaining W=.

The net result of these assumptions is that the two-parameter
CP model tends to overestimate CP and underestimate W=.

Modifications to the CP model. To address the limitations
stemming from the assumptions of the two-parameter CP
model, Morton (73) created a three-parameter CP model. The
three-parameter model addresses the assumptions that maximal
power output is infinite and that exhaustion occurs when W= is
depleted. Morton’s modification was to relax the requirement
of the two-parameter model that an asymptote exist at t � 0,
which caused P to unrealistically approach infinity as t ap-
proaches zero (Fig. 5) (73). His modification is expressed
mathematically as follows:

t �
W '

�P � CP�
� k, �k � 0�

where k is the asymptote and assumes a negative value. Because
the maximal power possible (Pmax) can only occur for instanta-
neous time (i.e., time to exhaustion � 0), it implies the following:

t �
W '

�P � CP�
�

W '

�CP � Pmax�
Morton further assumed that the maximal achievable power
output during a bout of exercise depends on the amount of the

remaining W=. Through additional reasoning and mathematics,
he recovered the above equation except that the interpretation
of Pmax changed to be the “maximal instantaneous power” and
was shown to be a linear function of the remaining W= (73).
Therefore, with this form of the CP model, the assumption that
W= is depleted at exhaustion is changed to the more realistic
assumption that exhaustion occurs when Pmax is less than the
desired power output.

Morton and Billat (78) extended the two-parameter CP
model to intermittent exercise, which is useful for optimizing
interval workout prescription. The model can be stated math-
ematically as follows:

t � n�tw � tr� �
W ' �n��Pw � CP�tw � �CP � Pr�tr�

Pw � CP

where t is total endurance time, n is the number of intervals, tw
and tr are the durations of the work and recovery phases in each
interval, respectively, and Pw and Pr are the power outputs
during the work and rest phases, respectively (78). Note that
proper behavior of the model requires the following con-
straints (78):

0 � Pr � CP � Pw � CP � W ' ⁄ t

The Banister IR Model

Definition and history. The Banister IR model quantitatively
relates performance ability at a specific time to the cumulative
effects of prior training loads (97). It succinctly describes an
individual’s exercise dose-response relationship and handles
the complicating factors of nonlinear time dependence and
individuality in a single framework. Banister et al. recognized
the difficulty in translating the results of training studies into
practice. In their original paper (6), they stated that “quantita-
tive data relating performance to different programs of training
has been obtained by several investigators but it is still difficult
to predict the results of a particular training program.” To
address this need, they conceived the IR model for training
planning and optimization. The original paper modeled the
training and performance of a competitive swimmer (6). Since
then, the IR model has been applied to diverse sports such as
running (79, 108), swimming (43, 44, 80), cycling (16, 17, 19,
20), triathlons (7, 69), weightlifting (21, 22), and the hammer
throw (18). Although its use to date has been mostly confined
to laboratory studies, the model is attracting renewed interest
due to the emergence of commercially available devices for
real-time monitoring of exercise and software for implement-
ing the model.

Equation derivation and assumptions. In examining a hy-
pothesized performance time course that followed from train-
ing, Calvert et al. (24) proposed that the performance kinetics
behaved like a first-order system. A system whose behavior
varies over time is typically modeled using ordinary differen-
tial equations (ODEs). Calvert et al. (24) thus proposed an
ODE that could recreate the qualitative form of the hypothe-
sized performance time course. They then solved this equation
using standard mathematical techniques (APPENDIX A). Calvert
et al. noticed that their proposed equation did not adequately fit
performance data from a competitive swimmer whose training
and performance they had monitored over several months.
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Fig. 5. The three-parameter CP model. The three-parameter CP model [CP3(t)]
features a nonzero time asymptote. Compared with the two-parameter model
[CP2(t)], the three-parameter model results in lower CP estimates (compare
CP2 and CP3) and higher W= values for the same data (Subject A from Ref. 73).
The third parameter, Pmax, of the three-parameter model represents the maxi-
mal instantaneous power, whereas for the two-parameter model power ap-
proaches infinity as time approaches zero.
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Specifically, they noticed that the swimmer’s performance
capacity decreased when his training load was increased (24).
They therefore modified their original model to be a two-
component system in which training was posited to cause both
positive and negative effects, respectively, attributed to “fit-
ness” and “fatigue.” The equations for each of these two
components were of the same form as the equation they had
first proposed. Performance was calculated as the difference
between the positive training effects (PTEs), ascribed to fit-
ness, and the negative training effects (NTEs), ascribed to
fatigue (APPENDIX A; Fig. 6, A and B). Further assumptions were
specified to describe how performance changed with time. In
response to a given training load, the NTE initially outweighs
the PTE such that the subsequent performance capacity de-
creases. However, the NTE dissipates faster in time than the
PTE, such that the PTE eventually outweighs the NTE and
performance capacity increases (Fig. 6C). Based on these
simple assumptions, the IR model can capture much of the
variance in performance data collected over time (R2 � 0.90 in
some cases) (16, 79, 108).

Physiological basis. The IR model provides a window into
the dynamics of adaptation to physical training. The PTE
and NTE profiles qualitatively correlate with measurable
physiological parameters related to fitness and fatigue, re-
spectively. For example, the kinetics of iron status biomark-
ers in female runners generally follow that of the NTE (9),
as do markers of muscle cell damage (elevated serum
enzyme activities such as creatine kinase, lactate dehydro-
genase, and aspartate aminotransferase) (8, 10, 11). Corre-
lations were also found between serum hormone levels and
both PTE and NTE (21, 22). Caveats with the cited studies

are that they generally included few subjects, there was
considerable variability in the biochemical data, and in
several of the studies, there were no statistical assessments
of the correlations. More robust quantitative correlations
were reported by Wood et al. (108), who observed a strong
correlation between the PTE and ventilatory threshold and a
moderate correlation between the NTE and scores from the
Profile of Mood States questionnaire, which is sensitive to
changes in perceived fatigue. Overall, these studies provide
evidence demonstrating that the model parameters reflect, to
some degree, the underlying physiology of training adapta-
tions. However, as with W= in the CP model, the model
parameters likely do not represent a single physiological
variable. Instead, they represent the aggregate effects of
multiple variables that contribute to the dynamic response of
performance to training.

The physiological validity of the model is further supported
by its ability to capture several well-established qualitative
features of performance kinetics as a function of training.
These features include the initial stagnation or decrease in
performance capacity when training is increased (overreach-
ing), the plateau effect if training load is maintained, the
supercompensation effect observed with reduced training load
(taper) after a period of overload, and detraining effects when
training is ceased or markedly reduced (Fig. 6C). By featuring
athlete-specific input data and parameter values, the model is
customized to the individual and therefore reflects the principle
of individuality. Hence, the IR model concisely integrates core
training principles such as overload, overreaching, supercom-
pensation, reversibility, and individuality.
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Fig. 6. Definition and description of the im-
pulse-response (IR) model. The IR model pre-
dicts performance based on the simple premise
that it is the sum of base-level performance and
positive training effects (PTEs) minus negative
training effects (NTEs). A: summation equation
form of the IR model. B: recursion equation
form of the IR model. This form is most useful
for spreadsheet-based calculations. C: the IR
model recapitulates the known qualitative fea-
tures of the training response. In the bottom
graph, simulated daily training impulses were
plotted as a function of time. The athlete per-
formed workouts of 100 training impulses
(TRIMPs) per day for 120 days. The following
7 days featured a taper in which daily TRIMPs
were progressively reduced to 30. Training was
ceased thereafter. PTE, NTE, and performance
were calculated from the simulated TRIMPs and
used the following parameter values: p(0) � 500,
k1 � 1, k2 � 2, �1 � 27, and �2 � 10. Arbitrary
units (AU) were used for p(0), k1, and k2,
whereas �1 and �2 were expressed in units of
days.
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Practical implementation. QUANTIFICATION OF DAILY TRAIN-

ING LOADS. The model takes as input daily training loads. The
training load of a bout of exercise can be expressed in the
following general form:

training load � intensity � duration

Quantifying duration is simple, but quantifying intensity is
difficult because work rate and the resulting metabolic stress,
which chiefly determines the adaptive stimulus, are nonlinearly
related. This nonlinearity is illustrated by the exponential
increase of blood lactate as a function of work rate (26, 31). As
such, it is a challenge to quantify and compare workouts of
differing volumes and intensities in terms of their abilities to
induce physiological adaptations. A number of metrics exist
for estimating training load, including session rating of per-
ceived exertion, ordinal categorization, Lucia’s training im-
pulse, summated heart rate (HR) zone score, and excess
postexercise V̇O2 (15, 51, 97). The best-known system of
training quantification, however, is Eric Banister’s training
impulse (TRIMP). Predicated upon HR (in beats/min) reserve
as a measure of intensity, TRIMP accounts for the observation
that higher workloads are more metabolically taxing (exponen-
tially so) than workloads performed for the same duration at
lower intensity (5), as follows:

TRIMP � t � k � FHRR

FHRR �
HRaverage � HRrest

HRmax � HRrest

where t is the duration of the exercise bout (in min), FHRR
is the fraction of the HR reserve, and k � 0.64e1.92 � FHRR

or 0.86e1.67 � FHRR for men and women, respectively.
The reliance of TRIMP on HR can be problematic (as

discussed below in Limitations). To address in part these
shortcomings and to exploit the data from power meters,
Coggan devised the training stress score (TSS) for cycling (1).
A key feature of the TSS metric is the “normalized power”
(NP) metric, which represents a transformed “average power”
of the workout that accounts for the variability of the workout’s
intensity arising from changes in power output due to hills,
wind, drafting, etc. In addition, physiological responses are
curvilinearly related to intensity, such that large power outputs
induce disproportionately higher physiological stress than
lower power outputs. Therefore, average power does not ade-
quately represent the stress incurred by a ride that features
forays into higher power outputs interspersed with periods of
low power output. NP is determined by calculating 30-s mov-
ing average of the raw power data from a workout, followed by
raising those averages to the fourth power (thus emphasizing
higher power outputs), averaging those values, and then taking
the fourth root of that average (1, 51). The 30-s moving
average approximates the time constant of physiological re-
sponses (such as O2 kinetics) to changes in intensity (1).

The TSS approach has been extended to runners (66), and
Skiba has modified the TSS framework to create power-based
metrics for swimming (SwimScore), cycling (BikeScore), and
running (Gravity-Ordered Velocity Stress Score) (88–90, 92,
93). While these metrics are gaining popularity among athletes,
they have yet to be rigorously validated (51), with Skiba
having reported a preliminary evaluation of the TSS metric
(91). Finally, a modified TRIMP based on CP has been recently

proposed by Hayes and Quinn (42), but it too remains to be
validated. We describe in detail the computations for quanti-
fying a cycling workout using both TRIMP and BikeScore in
Fig. 7.

FITTING THE IR MODEL. The Banister IR model features five
adjustable parameters, including the initial performance capac-
ity, two time constants that describe the decay of the PTE and
NTE, and two gain parameters that relate how the daily load
determines the amplitudes of the PTE and NTE (APPENDIX A;
Fig. 6). To estimate the model parameters, the model is
calibrated to performance data. Performance is typically mea-
sured by performing maximal effort time trials over a pre-
scribed distance or duration. In cycling, for example, the
average power output for a 5-min maximal effort could serve
as the performance estimate. In running, one might perform a
1-mi. time trial on a track and use the velocity as the perfor-
mance metric.

There are several guidelines for ensuring the collection of
high-quality performance data. First, the tests must be done
with maximal effort and ideally with even pacing. Second, the
test conditions should be kept as consistent as possible (e.g.,
same course, time of day, etc.) to minimize variance contrib-
uted by external factors. In ideal circumstances, the perfor-
mance test would be the same distance or duration as the goal
event. In practice, however, the time trials are typically kept
short in duration (e.g., 3–15 min) to preserve the athlete’s
motivation. The shorter duration might reduce the predictive
ability of the model with respect to performance in the goal
event. However, the impact of this limitation is mitigated by
the fact that aerobic energy production dominates the supply of
energy for performances of �75 s or longer in duration (39),
such that the capacities for performances of short and longer
durations correlate. Third, the tests should be done as fre-
quently as possible. We advocate performing the tests at least
weekly. Finally, the tests should be done in all stages of the
training cycle, even if the athlete is tired from heavy training
and not expected to perform well. The model is fit to the data
using nonlinear regression in which the parameters are itera-
tively changed until the error between model and data is
minimized (Fig. 8A). We provide a step-by-step procedure for
fitting the IR model using the Solver function in Excel in the
supplemental spreadsheet file.

For the optimal estimation of the model parameters, it is
advantageous to execute a training program that leads to each
parameter in the model being emphasized or, in modeling
parlance, “identifiable” during the model fitting process. Such
a program was performed by Morton et al. (79), in which the
two subjects ran once a day for 7 days followed by running
twice a day for 21 days and then ceasing the training runs for
50 days. Overall, the training program represented a step
increase in training to a load that was sufficiently severe to
induce negative effects on performance, thus emphasizing the
fatigue gain term. When training was ceased, the fatigue and
fitness time constants were emphasized, especially the latter as
time wore on and fatigue was fully dissipated. Throughout the
training period, at least two time trials were performed each
week to collect performance data. The experimental protocol
led to good model fits (R2 � 0.74 and 0.90) (79). While
appealing from a scientific perspective, athletes training for
competition might be reluctant to adopt such a protocol. A
more practical alternative would be to monitor the athlete’s
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normal in-season training, which would be expected to induce
substantial overload, and then during the initial portion of the
off season, when the athlete is not formally training, continue
the performance tests for a few weeks to monitor the decay in
performance due to loss of fitness.

QUANTIFICATION OF PERFORMANCE. An underlying issue in
trying to mathematically relate training and performance is that
performance is a nonlinear function of training (97). Specifi-
cally, the training necessary to achieve a specific percentage
improvement in performance increases approximately expo-
nentially as a function of the stage of the athlete’s career.
Novice athletes rapidly improve with training, whereas expe-
rienced athletes make small improvements. Morton et al.(79)
addressed this issue in quantifying running performance by
modeling the progression of world records over time and
devising a criterion points scale based on the model. Another
study (97) compared a criterion point scale with a scale based

on the percentage of personal best time and found little differ-
ence between the two. More work is needed to define the
importance of the sensitivity of the IR model predictions to the
nonlinear training-performance relationship.

Conceptual benefits and practical applications. The IR
model provides several conceptual benefits. First, it elegantly
summarizes the principles of training into a unified and coher-
ent framework, as noted above in Physiological basis. Second,
by taking estimated training stress as input, the IR model
reinforces the notion that exercise is a physiological stress that
disturbs homeostasis, the restoration of which involves numer-
ous adaptations across organ systems. The immune, neural, and
endocrine systems coordinate these responses (34) and these
systems can be compromised if excessive stress is applied,
which is manifested as nonfunctional overreaching or over-
training (67, 96). Quantifying training stresses of workouts
serves as a means to check that appropriate amounts of stress
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Fig. 7. Quantifying training load from a single cycling workout using TRIMP and BikeScore. The workout involved a �5-min warm-up and 5 � �2.7-km
intervals at �350-W average power for each interval, followed by a cool down. The athlete’s CP was �315 W, such that the intervals were zone 5 (V̇O2 max).
The graph shows raw data from both a power meter (Saris PowerTap) and HR data from wrist-mounted global positioning system unit (Garmin Forerunner 305).
Power data were overlaid with a 25-s exponential moving average (EMA-25s), which is the first step in the calculation of BikeScore (see the supplemental
spreadsheet for the EMA-25s calculation), to better reflect the kinetics of the physiological stress (93). HR increased to �180 beats/min for most of the intervals,
which was well over the HR achieved at CP for this athlete (�160 beats/min). Right: the calculations leading to the TRIMP estimate, which in this case was
a value of 85. Bottom: data and calculations necessary to compute BikeScore, a power-based metric of training stress that seeks to better reflect the physiological
effects of training than TRIMP by expressing workout intensity as a function of CP, to account for the variability in intensity and nonlinear effects of higher
intensities and to provide a single number to represent the physiological stress (88, 93). BikeScore was computed according to the following steps: 1) the EMA
at each time point was raised to the fourth power and averaged, and the fourth root of the average value was taken to calculate the “xPower,” which is a metric
that reflects the disproportionately higher physiological cost of high intensities; 2) the relative intensity (RI) was computed by taking the ratio of the xPower to
CP, which expresses the intensity of the ride relative to CP; 3) the “session-normalized work” (NWs), which reflects a scaled energy expenditure according to
the intensity of the ride, was computed by multiplying xPower (in W) by the session duration (in s); 4) a similar computation was used to calculate the “1 h at
CP-normalized work” (NWCP), in which CP was multiplied by 3,600 s; 5) the “raw BikeScore” (RBS) was computed as the product of RI and NWCP, and 6)
the BikeScore was computed as the ratio of RBS and NWCP multiplied by 100. Note the difference between xPower (278 W) and the session average power
(215 W), which reflected the high intensity of the zone 5 intervals.
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are being applied. Furthermore, the model highlights the con-
cept that performance adaptations are a function of aggregated
training stresses, which implies that no single type of workout
dominates in influence but rather consistent daily training that
induces overload followed by a taper will result in peak
performance.

The IR model can be used to optimize athletic performance
through the tools of influence curves and simulations. Both
tools require estimates of the model parameters for the indi-
vidual in question. The influence curve is a plot of the effect of
a unit training impulse for each day leading up to the day of a
goal performance (Fig. 8B) (33). The curve is solely a function
of the model parameters and is independent of the daily
training loads. Two derived parameters, tg and tn, represent the
day on which training will have the highest positive influence
on performance and the day after which training will have a net
negative influence on performance, respectively (Fig. 8B) (33).
A few guidelines for training optimization can be gleaned from
the influence curve. First, training should be concentrated
during the times of high positive influence, i.e., around tg,

while the taper should be well underway by tn (93) Second, the
influence curve implies that training done well before the day
of the key event has little influence. Consequently, for typical
parameter values, it implies that training blocks need only last
a few weeks to �3–4 mo, which agrees with data supporting
block periodization as an optimal periodization strategy (50).
Finally, influence curves provide guidance on how to train for
multiple events scheduled on different days (33). A true peak
performance can only be achieved on a single day, such that a
compromise is required if good performances are sought in
events on different days. The influence curve provides a means
for optimizing this compromise.

Simulations are conducted by proposing daily training loads
and inputting these into the IR model along with parameter
values determined for the individual from previous model fits.
The model is then solved for each hypothetical training pro-
gram and performance predicted on the day of the goal event.
The program that elicits the highest performance is then im-
plemented. Simulations were used by Morton (77) to perform
a theoretical study of different periodization schemes and by
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Fig. 8. Practical implementation of the IR model. A: training and performance data were used to fit the IR model for an individual athlete. Here, BikeScore was
the metric used to estimate daily training loads (bottom). Performance data were determined from periodic time trials (�; top). The predicted performance [p(t)]
was estimated by fitting the five IR model parameters (right) using nonlinear regression (Microsoft Excel Solver; see the supplemental spreadsheet for
implementation). The R2 for the model fit was 0.98. B: fitted model parameters were used to compute the influence curve for the athlete, which is a tool to optimize
training. The curve can be interpreted in two ways in that it can be read from both left to right and from right to left. In the former case, the curve shows the
net influence per unit training stress on performance on each day before the day of the goal performance (tp). Two derived parameters, tg and tn (vertical dotted
lines), are shown. tg is the day before the race, during which the training performed will have the greatest positive influence on performance on tp. tn is the time
period before tp, in which any amount of training is predicted to have a net negative influence on performance. The literal interpretation of tn is that training should
be ceased altogether on the day corresponding to tn. However, athletes prefer to avoid ceasing training, so from a practical standpoint tn corresponds to the day
by which the taper should be well underway. When read from right to left, the influence curve estimates the influence of a single workout over time. That is,
a workout performed on day 0 will have a negative influence up until tn days have passed, owing to the accumulation of fatigue, but will then have a positive
influence thereafter once fatigue decays.
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other groups (7, 98–100) to study tapering schemes. We show
the simulation approach in Fig. 9.

The IR model’s utility extends beyond sport as it can be
applied to individuals rehabilitating from disease or injury. Le
Bris and coauthors (63, 65) published several studies using the
models with cardiovascular rehabilitation patients to predict
the loss of functional capacity once the rehabilitation program
was ceased or otherwise interrupted. Furthermore, the IR
model was used to predict the prolonging of fitness benefits
accrued by a training regimen featuring five versus three
sessions per week in phase 2 rehabilitation patients (64).
Jomenez and Skiba (52) used the IR model to predict the time
course of functional capacity restoration in a patient recovering
from knee surgery. The IR model is therefore broadly appli-
cable across subject populations.

Limitations. The IR model suffers from several significant
practical challenges and scientific limitations as a tool for
training optimization. With regard to practical challenges,

using the model requires the athlete to be highly motivated and
diligent in recording all the training data and in performing
frequent maximal effort performance tests. In addition, the use
of power- or pace-based metrics requires the purchase of
expensive specialized equipment.

The IR model has been criticized for an apparent lack of
predictive ability (43, 97), which casts doubt on its usefulness
for optimizing training (23). The principal criticisms stem from
statistical evaluations of the model that found wide confidence
intervals on the parameter estimates and the tn and tg parame-
ters. Interestingly, in cases in which predictivity has actually
been tested, the model performs surprisingly well. Hellard
et al. (43) found that despite the variability in the parameter
values, the corresponding “variability in modelled perfor-
mances was quite small” and the parameter values were stable
in the face of removal at random of a single data point. In our
experience coaching athletes, we have found much practical
utility in applying IR modeling to training planning. In partic-
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Fig. 9. The IR model can be simulated to predict performance based on hypothetical training programs. Simulations were performed by assigning daily training
loads associated with each training program (in this case, reflecting two periodization schemes over a training period of 180 days) and using those as input to
hypothetically parameterized IR models reflecting two different athletes. Four simulations were therefore performed. The day of the goal event, tp, is defined as
day 180. A: parameter values and periodization schemes for each simulation. Simulations 1 and 3 (gray) pertain to athlete 1 (note the same parameter values),
whereas simulations 2 and 4 pertain to athlete 2. B: illustration of the rectangular and triangular periodization schemes. The two schemes feature the same total
TRIMPs accumulated over the 180 days. C: predicted performance curves for each simulation over the 180 days. Athlete 1 achieved higher performance level
on tp with the triangular periodization scheme than with the rectangular periodization scheme (compare curves 1 and 3). Conversely, athlete 2 achieved higher
performance with the rectangular periodization scheme because the triangular periodization scheme caused the athlete to peak too early for optimal performance
on day 180 (compare curves 2 and 4). Therefore, the parameter values interact with the periodization schemes in determining performance on the final day of
the training period. In both periodization schemes, athlete 2 outperformed athlete 1 owing to favorable decay constants for PTE and NTE. This simulation
emphasizes the individuality of training responses, both in absolute and relative senses.
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ular, one of the authors (P. F. Skiba) used the IR model to
inform the training protocols of two world championship
multisport performances (one of which was a world record)
and several world championship podium placings as well as
dozens of wins at the elite and amateur level in triathlons. We
acknowledge, however, that it remains unclear how much of
the model’s utility was due to its ability to accurately predict
the dynamics of PTE, NTE, and performance. Rather, it is
possible that the model was successful because it models in a
general sense the kinetics of human fatigue, adaptation, and
performance. Put another way, different model parameters may
have resulted in similar conclusions with respect to the abso-
lute training prescription.

More work is therefore needed to evaluate the usefulness of
the IR model in planning training. In particular, data of the
highest quality must be used. We expect that power-based
metrics of training quantification will be helpful in this regard,
given the limitations of HR-based metrics. The principal lim-
itations of HR are its variation with factors such as hydration,
rest, illness, or cardiac drift (1) and the underestimation of
stress from workloads exceeding V̇O2 max. The latter is an
important deficiency given the recent interest in high-intensity

training for both health and athletic performance (40, 62).
Furthermore, it is imperative that frequent (i.e., at least
weekly) performance tests are carried out. Parameter fits
also stand to be improved by using a training program that
features sufficient variation to isolate or decouple the model
parameters from each other (e.g., Ref. 79). Finally, in cases
in which NTEs are not apparent, a single-component model
could be used (19).

Modifications to the IR model. The IR model assumes that
both fitness and fatigue respond linearly to training load, but, in
reality, the body has a finite capacity to adapt to training. To
reflect this physiological reality, Hellard et al. (44) proposed a
modified IR model in which the daily training loads [w(s)] were
transformed using the saturable the Hill equation (Fig. 10A). This
transformation restricts the effects of high training loads on the
PTE and NTE. This model outperformed the classic IR model
in tracking performance of Olympic-level swimmers over 4 yr
of training. The modified model also revealed that the subjects
displayed varying upper thresholds for training loads, thus
emphasizing the importance of individualizing training pro-
grams to ensure that the prescribed training results in positive
adaptation.
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Banister (5) recognized that the model parameters likely
change over time and suggested resetting the model parameters
every 60–90 days. Busso and colleagues (20) also noticed that
tn values for subjects from different studies increased with
training intensity. They further reasoned that different physio-
logical processes operating at different timescales likely con-
tribute to the NTEs, such that time-invariant parameters might
be unsuitable for modeling performance from a varied training
regimen (20). To explore time-varying parameters in the IR
model, Busso et al. (20) used a recursive least-squares algo-
rithm that allowed the parameters to vary over time and found
that the increased flexibility of the model allowed it to better fit
performance data. In a subsequent study (17), they showed that
increasing training load by increasing training frequency
caused the gain terms (k1 and k2) to change. This prompted
Busso (16) to propose a modified IR model in which k2 was
redefined to vary as a function of training according to the
following formula:

k2
i � k3�

j�1

i

w� j�e��i�j�⁄�3

which modifies the NTE term in the IR model as follows:

p�t� � p�0� � k1�
i�1

t�1

w�i�e��t�i�⁄�1 � �
i�1

t�1

k2
i w�i�e��t�i�⁄�2

The proposed modified IR model led to more precise fits than
the standard two-component IR model (16). These studies
imply that training adaptations are context dependent: as over-
all training load is increased, the amount of performance
improvement from a single unit of training varies as an in-
verted U-shape, such that an optimum amount of daily training
exists (16).

Approaches for modeling training beyond the IR model have
also been proposed. These include regression and mixed-
effects models (3, 44) as well as neural networks and a
dynamic meta-model (51). Each of these has unique advan-
tages and disadvantages. To date, however, no modeling
framework has emerged as superior to the IR model, but this
could change as alternative frameworks are increasingly being
studied.

Strategies for Teaching Performance Modeling

Various pedagogical strategies exist for teaching perfor-
mance models. These include reading, didactic lectures, and
active learning strategies such as thinking about conceptual
questions, problem solving, computer-based exercises, criti-
cal evaluation of scientific studies, and laboratory- or field-
based experiments. It is up to the instructor to choose the
mix of strategies that suits the purpose, audience, and
logistical constraints of the course. Our report and the
references cited herein serve as content for reading and
lecture materials. The rationale section of this report pres-
ents a comprehensive justification of why students ought to
learn performance models, which serves to contextualize the
material to be learned and to motivate the students.

Regardless of the audience, the course or module should
cover at minimum the content necessary for learning how to
implement the models. This minimal content includes the follow-
ing subsections from the lecture material section: 1) definition,
2) physiological basis, 3) practical implementation, 4) concep-

tual benefits and practical applications, and 5) limitations.
Beyond this minimal content, additional content focusing on
the practical implementation should be the focus for applied
exercise physiology practitioners. Such instruction includes the
steps for uploading training data from the monitoring devices
that their clients typically use (e.g., HR monitors, global posi-
tioning system units, and power meters), fitting the models,
interpreting their outputs, and devising practical recommenda-
tions. Monitoring devices all come with basic software to
upload data, but additional software is typically required to fit
the models. We have provided a comprehensive supplemental
spreadsheet file (Microsoft Excel) that demonstrates the com-
putations necessary to implement the models. Pettitt (83) has
also described the use of Excel for teaching the basic aspects of
the CP model. Specialized software, such as RaceDay Apollo
(www.physfarm.com), is also available.

Beyond the basic use of the models, we encourage edu-
cators to use the models as conceptual guides for teaching
exercise prescription. The models are instructive in this
regard for two principal reasons: 1) they succinctly integrate
the core concepts of exercise prescription and 2) they can
serve as a means for experiential learning via computer
exercises. Many different questions or scenarios can be
investigated using the performance models. For the CP
model, instructors could design computer exercises to in-
vestigate different interval workouts using the CP model for
intermittent exercise (78). For the IR model, computer
exercises could be designed to estimate training loads (e.g.,
TRIMP and BikeScore) for different types of workouts,
which would demonstrate how a workout’s duration and
intensity interact to produce adaptive stress. Similarly, dif-
ferent periodization schemes and their effects on different
individuals could be investigated through simulation exer-
cises (e.g., Fig. 9) (77). In this way, performance models
illuminate the principles of exercise prescription.

For both audiences, the CP and IR models provide frame-
works for critically thinking about exercise physiology-related
questions. The principles might not lead to the correct answer,
but they can help one to achieve an educated guess. In APPENDIX B,
we present questions regarding training with answers that are
based on concepts underlying the CP and IR models. We
encourage instructors to develop concept-based questions such
as these and to use them as the basis for Conceptests (an active
learning technique based on in-class clicker-based questions)
(30). Inspiration for additional questions can be found in
sport-related internet chat forums (e.g., www.letsrun.com and
www.slowtwitch.com). Indeed, an interesting exercise is to
have students go online to these forums, find questions posed
by users, and answer these questions based on concepts from
the performance models, perhaps supplemented with data from
computer simulations and/or published data. Such exercises
serve as real-life case studies that can help bridge the gap
between classroom-based learning and real-world exercise pre-
scription.

For research-focused exercise physiologists, we encourage
that additional content focus on the general skills of mathe-
matical modeling using the performance models as examples.
In this regard, the subsections on model derivations and mod-
ifications can be used to explain how scientists convert obser-
vations and ideas about the physical world into mathematical
equations. Linear and nonlinear regression techniques for fit-
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ting the models to data can be introduced and compared,
followed by statistical evaluation of the fitted model (e.g.,
residual diagnostics and evaluation of model predictivity
through cross-validation). Papers by Gaesser et al. (36) and
Hellard et al. (43) are particularly instructive for statistical
evaluation of the CP and IR models, respectively. Software
such as Excel, R (http://www.r-project.org/), and Matlab (The
MathWorks, Natick, MA) are some of the popular options for
implementation. Once working models are in hand, students
should be taught various ways in which models can be ana-
lyzed. Scientific questions about the modeled system are often
answered by exploring model behavior using mathematical
analysis [i.e., the equations are manually manipulated (33, 35,
73)] or via simulations of the model with different parameter
values or inputs (7, 77, 98–100). These methods can be taught
by critical reading of the cited papers and by replicating the
analyses contained within. Once the students have a working
knowledge of the modeling process as it pertains to perfor-
mance models, an option for further instruction is to have them
critically review exercise physiology studies incorporating
mathematical models to broaden their perspective on how
different types of models are used to answer scientific ques-
tions.

A capstone strategy for teaching performance modeling is
to have students use it in the real-world setting. Practitioners
have the opportunity to apply performance models in their
everyday practices. Exercise physiology students in the
academic setting could be exposed to performance modeling
via laboratory exercises. One option to integrate both the CP
and IR models is to have students perform a longitudinal
laboratory exercise. Such an exercise could proceed as
follows. In the first laboratory session, the students test their
CP. They then follow a training program for several weeks,
record their daily training data, measure their performance
weekly, and conclude by performing another CP test. Stu-
dents then use their data to fit the models followed by
analyzing and interpreting their results. Beyond this basic
strategy, we suggest having students perform experiments
that involve the models. Examples include comparing the
traditional mode of CP testing (e.g., 4 – 6 maximal effort
time trials of varying duration) versus the results of the
3-min all-out test or comparing training programs using the
IR model. These exercises require minimal equipment if the
training loads are computed using TRIMP (i.e., only a
wrist-mounted HR monitor with stopwatch capabilities).

We conclude by discussing a perceived obstacle to teaching
performance modeling, which is the need to understand math-
ematics at a sophisticated level. We emphasize that the math-
ematical sophistication can be tailored to the audience. For
applied exercise physiology practitioners, the concepts and
practical aspects of implementing the models using software
should be emphasized. Analogously, statistics are taught to
undergraduates across the spectrum of educational disciplines.
In cases in which the students have limited quantitative train-
ing, the concepts of the statistical tests are taught and software,
such as Minitab or SAS, is used to implement the algorithms.
For exercise physiologists destined for a research career,
greater emphasis can be placed on the theoretical and mathe-
matical aspects of the models.

Conclusions

Mathematical models of training and performance are effec-
tive conceptual and practical tools for evidence-based exercise
prescription. However, a lack of education contributes to lim-
iting their widespread implementation. Our report is intended
to serve as a resource for the teaching of the CP and IR models
by instructors of both applied exercise physiology profession-
als and research-focused exercise physiologists. We emphasize
that the mathematical sophistication can be tailored to the
audience such that the models can be broadly accessible. We
have taught these models for several years now in various
formats and have distilled the course content into this report. In
the years to come, we intend to build on the content, teaching
approaches, and tools found in our report to continuously
improve the teaching of these models and exercise prescription
in general.

APPENDIX A: DERIVATION OF THE IR MODEL

Banister and colleagues posited that the response in performance to
training followed first-order kinetics. Mathematically, first-order ki-
netics implies that the rate of change of a variable is dependent on the
first-order power of its value. A model of the rate of decay of
performance capacity is expressed as follows:

dp�t�
dt

� �
1

�
p�t�

where p(t) is performance capacity, t is time, and � is the decay time
constant.

Similarly, when training is performed, performance is increased,
and a term reflecting this increase can be added to the equation, as
follows:

dp�t�
dt

� �
1

�
p�t� � w�t�

where w(t) is training stress.
The equation above is a linear ODE, which can be solved using the

method of Laplace transform (87). Laplace transforms are applied to
each term of the equation as follows:

�dp�t�
dt � � sP�s� � p�0�

�1

�
p�t�� �

P�s�
�

�w�t�� � W�s�
and we substitute the transforms in place of their corresponding terms
in the original differential equation, as follows:

sP�s� � p�0� � �
P�s�

�
� W�s�

This algebraic equation is then solved for P(s) to derive its “transfer
function,” which is the functional relationship between system input
and output:

P�s� � �
W�s�

�s �
1

�	
Note that p(0) is assumed to equal 0.

If we define G(s) � 1/(s � 1/�), then it becomes apparent that the
equation is in the form of a product, as follows:
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P�s� � G�s�W�s�
This equation can be solved using the convolution theorem, which
states that the inverse Laplace transform of a product is its convolu-
tion:

�1�P�s�� � �1�G�s�W�s�� � �g � w��t�
A convolution is defined as follows:

p�t� � �g � w��t� � 
 g���w�t � ��d� � 
 g�t � ��w���d�

We consult Laplace transform tables to find the inverse Laplace
transforms for g(t � 	). We note that G(s) � 1/(s � 1/�) is of the
following form: 1/(s � a) and has the inverse Laplace transform of eat.
Therefore, if we let a � �1/�, g(t � 	) � e�(t � 	)/�. We substitute this
term into the above integral:

p�t� � 
 e��t���⁄�w���d�

This is the solution to the differential equation describing performance
as a function of training stress and its intrinsic decay over time. To
make this equation usable in a practical sense, we discretize it by
expressing the continuous integral as the following sum:

p�t� � �
i�1

t�1

e��t�i�⁄�w�i�	t � �
i�1

t�1

e��t�i�⁄�w�i�

if 
t is set equal to a constant of 1 and i is the ith day leading up to
day t.

When applied to data from a swimmer, Banister and colleagues
(24) found that performance capacity became negative during the
initial stages of training. The original equation could not capture this
behavior, forcing them to reformulate their model. They did so by
modeling fitness (PTEs) and fatigue (NTEs) separately and then
assuming that performance was equal to the difference of fitness and
fatigue (24). PTE and NTE were modeled in an identical fashion as
performance above. Two forms of the equation were eventually
settled on, one in the following summation form:

p�t� � p�0� � k1�
i�1

t�1

e��t�i�⁄�1w�i� � k2�
i�1

t�1

e��t�i�⁄�2w�i�

where k1 and k2 are gain parameters, and one as the following set of
computationally friendly recursion equations:

g�t� � g�t � i�e�i⁄�1 � w�i�
h�t� � h�t � i�e�i⁄�2 � w�i�
p�t� � p�0� � g�t� � h�t�

APPENDIX B: SAMPLE CONCEPTUAL QUESTIONS AND
ANSWERS

Here we present sample conceptual questions and answers based on
concepts from the CP and IR models.

Question. Explain the rationale of interval training.
Answer. The CP model tells us that depletion of W= leads to

exhaustion, such that exercise performed at high intensity will be
necessarily limited in duration. The IR model assumes that the
metabolic adaptations to training are a function of the volume and
intensity of exercise. From the TRIMP calculation, we notice that
training stress is a strong function of volume. Therefore, if an athlete
wishes to exercise at a power above CP, then he or she will be limited
by W=, which would limit the volume of work at that power. To
accumulate sufficient duration at an intensity above CP without
prematurely fatiguing, the athlete can insert periods of recovery
between the work bouts to restore W=. Therefore, intervals provide a
means for accumulating volume at high intensities.

Question. The CP model implies optimal racing strategies for
different types of athletes. How might the approach of an athlete with
a large W= differ from that of an athlete with a high CP?

Answer. Athletes with a high CP would likely benefit from a
strategy in which they are able to set their pace in excess of the CP of
their competitors but below their own CP. This would force their
competitors to expend their limited W= and become exhausted sooner.
In contrast, athletes with a high W= would likely benefit from attempt-
ing to control the pace, preserving their W= for a finishing sprint.

Question. Why it is important to defend W= during racing?
Answer. Recent work suggests that W= recovers quite slowly, with

the recovery rate slowing as the power during the recovery period
increases. Thus, during most types of races, if W= is expended, it is
unlikely to be meaningfully recovered such that the athlete will
position him or herself closer to exhaustion.

Question. The CP model has an asymptote, suggesting a power that
can be maintained indefinitely. Is this a reasonable assumption?

Answer. It is not a valid assumption because athletes can become
fatigued for a number of reasons. For example, setting a power 5%
below the CP would still result in fatigue eventually, likely due to
glycogen depletion and/or central mechanisms.

Question. A commonly cited justification for the taper is that
athletes do not gain fitness in the final weeks before a race. Is this
belief justified?

Answer. This belief is unfounded because the IR model tells us that
every training session induces both fitness and fatigue. The gains in
fitness are initially obscured by increased fatigue, which may lead
people to believe that fitness was not gained. Accordingly, recent
research using a modified form of the IR model shows potential
performance benefits using tapers that follow a progressive decrease
in training with an increased workload in the final days leading up to
a goal event (99).

Question. Many training textbooks and coaches advocate a peri-
odization scheme featuring 3 wk of progressive overload followed by
a rest week in which training volume and intensity are reduced. Is this
periodization scheme optimal? (We note that “rest weeks” are distinct
from the final preevent taper.)

Answer. The IR model suggests that optimal periodization depends
on the individual and that the same level of performance can be
achieved by many different periodization schemes. Therefore, in some
cases, rest weeks might cause too large of a decrease in fitness for
some individuals, whereas others might require them to be able to
sustain 3 wk of increased loads. However, if daily training loads are
matched with the athlete’s ability to recover from those sessions, then
rest weeks should be unnecessary.

Question. A triathlete who trains with a Masters group 3–4
times/wk has plateaued at a time of 24 min for his 1,500-m swim. He
wishes to swim a 1,500-m freestyle in 22 min, and, to train for this, he
plans to apply the principle of specificity and do twice weekly
workouts featuring 15 � 100-m intervals in which each 100 m is
swum in 1:28 (� 22 min/15). The first workout will feature rest
periods of 30 s between each 100 m, and subsequent workouts will
feature gradually decreasing rest periods until he is able to swim 1,500
m in 22 min. In addition to these two workouts, he will train with his
Masters group 2 times/wk. Will his training plan work?

Answer. His training plan is unlikely to work. The IR model
predicts that improvements in performance require increasing training
stress beyond what one has done previously. Training stress is a strong
function of training volume, and he has not significantly modified this
variable in his plan. While the workouts are specific in terms of
training at goal race pace, they are unlikely to induce sufficient
overload to lead to a 2-min drop in his 1,500-m swim time.

Question. What is the optimal taper duration?
Answer. The answer depends on the individual because each

individual responds to training with different kinetics, which is re-
flected by the IR model as the values of the parameters (gain and time
constants). These parameters are used to calculate the tn parameter,
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which is interpreted as the day after which training will induce net
negative adaptations for performance on the day of the goal event. In
practice, tn is considered the day at which the taper should be well
underway.
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