
When Data Disappear: Public Health Pays As Policy Strays

Thomas McAndrew∗,1 Andrew A. Lover,2 Garrik Hoyt,3 and Maimuna S. Majumder4, 5

1Department of Biostatistics and Health Data Science, College of Health,
Lehigh University, Bethlehem, Pennsylvania, United States of America∗

2Dept. of Biostatistics and Epidemiology, School of Public Health and Health Sciences,
University of Massachusetts Amherst, Amherst, Massachusetts, United States of America

3Dept. of Computer Science and Engineering, PC Rossin College of Engineering and
Applied Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America

4Harvard Medical School, Boston, MA, United States of America

5Boston Children’s Hospital, Boston, MA, United States of America

(Dated: February 4, 2025)

On January 20th, 2025, President Trump signed multiple executive orders that greatly limit the ability of
public health entities like the Centers for Disease Control and Prevention (CDC)—and Health and Human
Services (HHS) more broadly—to release critical public health data. [1] Executive orders (EOs) are not
new, and have been used across many presidential administrations to shape policy at federal-, state-, and
local-levels.

However, last month’s EOs targeted public health infrastructure, leading to unspecified delays in the release
of many routine CDC data sources and reports, including the Morbidity and Mortality Weekly Report, which
was—until the week of January 23, 2025—in continual circulation since 1952. Public health decision-making
relies on real-time data and statistical models to quickly identify and quantify risks present in populations,
to inform the public in a timely fashion, and to deliver targeted health programming where required. [2–4]
However, there are currently no specific statutes that mandate the collection or reporting of many vital
epidemiological data sources.

Public health data builds policy

Infectious disease models at national- and state-levels rely almost exclusively on government-maintained
surveillance data.[5] When the influenza season begins, accurate and timely forecasts complement Advisory
Committee on Immunization Practices (ACIP) recommendations by providing public health officials real-time
and forward-looking information about the season: when will influenza transmission peak? How many cases
will be reported? How many will be hospitalized? Forecasts can also help assess the impact of preventative
actions: when is the right time to hold vaccine clinics? in what locations? when should we alert hospitals
that the season has started? Modeling—backed by the several governmentally-supported epidemiological
data sources—give public health officials access to a useful, albeit uncertain, future.[6]

To illustrate the importance of these vital epidemiological data sources that directly support public health
decision-making, let us rewind time to October 2023 (the beginning of the official 2023/24 influenza reporting
season), and directly compare influenza forecasts of US incident hospitalizations using two transmission
models: one model that takes advantage of several epidemiological data sources routinely collected and
disseminated (until these recent EOs) and a second model that uses only one of the several data sources.
Influenza is a benchmark pathogen with a robust collection of data, making it an ideal use case for illustrating
the importance of public health data.

The Blue model uses a diverse suite of epidemiological data sources, including the NHSN dataset (containing
(1) weekly incident influenza hospitalizations and (2) the percentage of hospitals that have reported data);
ILI-NET (that hosts (3) weekly percent influenza-like illness [ILI] across providers); MMWR (which reports,
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among other data, (4) vaccine effectiveness); and the GHCd dataset (hosted by NOAA, which reports (5)
average temperature and (6) barometric pressure—both of which modulate influenza transmission). [7–9]
We also collected (7) the estimated population size from the most recent US census which means the Blue
model relies on seven data sets. In contrast, The Red model solely relies on the NHSN hospitalization data.
CMS (Centers for Medicare & Medicaid Services) required that this NHSN dataset be collected, potentially
making it less prone to pause. In addition, all statistical models of influenza hospitalization train on this
data source. All of the aforementioned data sources are federally supported and have been impacted in some
way by recent EOs.

To measure the impact of missing data sources, we compare seasonal trajectories by producing parallel 32-
week (full season) forecasts of US national-level incident influenza hospitalizations (See Figure 1). Technical
details are in the supplement.
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FIG. (1) A 32-week-ahead (full season) forecast of US incident influenza hospitalizations for a model
trained on all data sources that are at-risk for pause or removal (blue), and a second model trained only on

NHSN hospitalization data (red). Forecasts are represented as a median (solid line and circles), 50%
prediction interval (darker shaded area) and 95% prediction interval (lighter shaded area). Ground truth

hospitalization data for the (unseen to the models) 2023/24 season in black.

Given the red forecast, using just a single—albeit meaningful—data source, public health officials would
have been faced with serious uncertainty about the trajectory of the influenza season, far exceeding the
bounds of the plot (see Figure inset). Worse, they may have interpreted the median prediction (solid
red line) without considering the associated uncertainty and might have anticipated a mild season, when
in fact, it was one of the most intense seasons recorded since the COVID-19 pandemic. This forecast
would have likely translated into policy actions that may not have sufficiently emphasized the need for
behavioral change communication (BCC) and vaccination, and may have even resulted in mis-communication
to hospitals regarding their staffing needs, provision of ventilators and antivirals, and policies to protect staff.
A comparison of the Blue model versus Red model forecasts (Figure 1) clearly illustrates the importance of
complementary data sources in producing a forecast with sufficient precision for public health agencies to
implement proactive health programs.

If the federal government were to no longer collect or maintain the public health datasets included in the
Blue Model then we may consequently see a drastic increase in influenza burden. A typical influenza season
leads to on average 400k hospitalizations, 20k deaths, all at a cost of approximately $11 billion. Without
data from NHSN, ILI-NET, NOAA, and MMWR, modeling efforts to directly support resource allocation,
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public health policy, and decision making will be gravely hindered. Moreover, public health data collection
is a matter of national security, as highlighted post 9-11. [10]

Public health data prepares us for pandemics

Notably, the current ongoing ‘pause’ of data collection, analysis, and dissemination is occurring in the midst
of a unprecedented national outbreak of H5N1 influenza (”bird flu”)—a pathogen with considerable pandemic
potential—in humans, birds, and cattle. [11] The fettered ability of the CDC to collect and distribute data,
and the inability to allow the CDC to inform the public about this ongoing outbreak, could have dire
consequences, nationally and globally.

In stark contrast to the current public health landscape, during the 2009 H1N1 “swine flu” pandemic, the
CDC rapidly established an Emergency Operations Center (EOC), which collected, analyzed and rapidly
disseminated data and subsequent guidance about the crisis as it unfolded.[12]

Many of the actions taken during the 2009 H1N1 pandemic, and early SARS-CoV-2 responses were coordi-
nated under the National Strategy For Pandemic Influenza Implementation Plan, developed under President
Bush’s administration in 2006.[13] At its core, this response plan relies on data collection, analysis, and
communication—all of which have been hindered by last month’s executive orders.

Potential paths forward

Safeguarding important health data sources, especially in the face of ongoing executive orders, requires
proactivity. While a wide range of actions are needed, we consider here a non-exhaustive list of realistic and
feasible approaches.

Public health data as public good. We must ensure that public health data is prioritized as a public
good. To be clear, public health data meets the requirements of a public good: use of health data does
not exclude, or reduce availability of this data to another. However, through executive action, public health
data can be limited or otherwise suppressed. Congressional processes that designate public health data as a
public good could stymie executive actions to remove these data sources.

Public health data at sub-national levels. Academia, industry, local government, and health part-
ners must expand efforts to ensure local control of governmentally-hosted datasets. For influenza forecasting,
this would entail, at minimum, storing and managing the collection of the above datasets: NHSN, ILI-NET,
and data collated in MMWR reports. Storage of these datasets is a marginal issue. A larger burden than
storage is supporting and coordinating collection. Thankfully, resources already exist to this end [14] which
include efforts to harmonize data formats to minimize unnecessary manipulations. [15]

Proxy data for forecasting. In preparation for future incidences where public health data disappears,
there must be a coordinated effort to collect data sets that can serve as proxies—that is, readily-available
data that can approximate unavailable data sources. For example, for influenza, past work demonstrated
the importance of human mobility, social media trends, genetic epidemiology, and OTC medicine sales to
forecast influenza. However, there is currently no single, organized approach to collect these proxy datasets,
nor an accepted method to measure their ability to substitute for traditional influenza signals, such as weekly
ILI and incident hospitalizations. By far, the most concerted effort is the Delphi Epidata API. This API has
built a unified framework for collecting epidemiological data, already collecting real-time data on COVID-19,
dengue, norovirus, and influenza.

Concluding thoughts

Open, readily-available public health data provide reproducible and transparent analyses and interpretations
to promote the health and well-being of the US. They serve as a common ground to discuss how to change
policy to better serve our citizens. Public health data is a public good, and thus, we must strive towards a
future in which it is never subject to removal or interruption—a future in which it is protected, if needed,
from executive action.
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Technical Document—When Data Disappear: Public Health Pays
As Policy Strays

I. DATASETS COLLECTED

To calibrate our model, we collected seven data sets: (1) the COVID-19 Reported Patient Impact and Hospital
Capacity (which contains information about influenza) from the National Hospital Safety Network (NHSN).
From this dataset we collected hospitalization data as well as (2) data on the percentage of hospitals or
facilities reporting data. (3) Public health lab data and (4) clinical lab data from the Outpatient Illness and
Viral Surveillance dataset called ‘ILI-NET’ which was accessed via FluView [1, 2]. (5) The Morbidity and
Mortality Weekly Reports which contains interim estimates of vaccine effectiveness against influenza. [3].
These data sources are hosted by the Centers for Disease Control and Prevention (CDC). We also collected
(6) the Global Historical Climatology Network daily (GHCd) dataset hosted by the National Oceanic and
Atmospheric Administration (NOAA). [4]. In addition, we used the census (7) to estimate the number of
individuals living in the United States.

The NHSN dataset was collected from 2021 to 2024 (three influenza seasons). From this dataset we collected
state-level data about the weekly number of hospitalizations, including US national hospitalization computed
as the sum over states, and the percentage of hospitals or facilities reporting to this dataset. Because
in the beginning of the influenza season not all facilities may report data, we estimated the number of
hospitalizations as the reported number divided by the percent of facilities reporting.

Influenza-like illness (ILI) data was collected from 2015 to 2024 (seven seasons). [5–8] From the ILI-NET
public health lab dataset, we collected state-level, weekly, number of patients who were diagnosed with
influenza-like illness and number of patients who attended a healthcare facility for any reason. ILI is a
syndromic diagnosis and defined approximately as a patient who is admitted to a healthcare facility with a
fever (above 38C) plus cough or sore throat. The percent ILI is defined as those diagnosed with ILI divided
by total number of patients. It should be noted that ILI includes a numerous number of respiratory illnesses
other than influenza. This is the reason for collecting the clinical lab dataset.

From the ILI-NET clinical labs dataset, we collected state-level, weekly, lab-confirmed percent positive cases
of influenza from the same time span: 2015 to 2024. Given one state and one week during the influenza
season, we multiply the percent positive for influenza from this lab dataset by number of ILI reports to
compute ILI+. [9] ILI+ is an estimate of the number of patients who have confirmed influenza.

We collected GHCd data from 2015 to 2024 to overlap with ILI data. From GHCd, we collected the average
weekly temperature and average weekly pressure from the three largest cities in each state (See Figure 2).
We defined state level temperature as the average over these three cities and the US national average as the
average over the three largest cities in all states. [10]

For our treatment of the model and the data below, we will refer to the set of seasons with a capital S and
one season using s and the set of all epidemic weeks as T and one week as t. Though the susceptible disease
state is also defined with a capital S there should not be confusion in the treatment of the model below.

I.1. Data pre-processing

A Gaussian filter with standard deviation 2 was applied to the mean (over cities) ambient temperature
and barometric pressure data. [11] As the transmission rate will depend on GHCd, and because we do not
expect rapid changes in contact patterns, the filter was used to produce a time-dependent transmission rate
that changed relatively slowly over time (See Figure 5 and associated section on the reproduction number).
Though this was not done, cross-validation could be used to find an optimal standard deviation, comparing
a forecast evaluation metric for different standard deviation values. The filter was implemented in Scipy. [12]
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FIG. (1) Data used for modeling collected for the 2015/16 - 2022/23 seasons. (A.) Percent influenza-like
illness that resulted in lab-confirmed influenza (i.e. ILI+) from ILI-NET. (B.) Estimated percent vaccine

effectiveness of the influenza vaccine per season from MMWR reports. (C.) Mean daily ambient
temperature (orange) and barometric pressure (green) data from NOAA. Inclusion of these data sources
greatly improves the proposed transmission model forecasts of incident hospitalizations with potential to

improve evidence-based public health decision.

NOAA data measured at 3 largest cities per state

FIG. (2) Ambient temperature and barometric pressure data—known to modulate influenza
transmission—was collected from the three most populace cities in every state (red circles show coordinates
of cities). The mean daily temperature and atmospheric pressure at the US national level was computed as
the average over all city temperatures and pressures. These data were collected from the NOAA Global

Historical Climatology Network dataset via the meteostat python package.

II. TRANSMISSION MODEL

Let individuals be assigned to one of 6 disease states: susceptible (S) and not vaccinated, susceptible and
vaccinated (St), latent (exposed, but not infectious) (E), infectious (I), hospitalized (H), and removed (R).
For a more realistic exposed period, split the exposed compartment into a E1 and E2 compartment.
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Then if we assume a closed population with homogeneous mixing, we expect the proportion of individuals
in each disease state to evolve according to Figure 3 where β(t) is a time-dependent transmission rate that
describes the number of effective contacts (contacts between a susceptible and infected individual that result
in influenza transmission); τ is the reduction (a value between zero and one) that describes how vaccination
reduces the transmission rate; 1/σ describes the duration of the latent period (the time between when a
susceptible makes effective contact and they become infectious); 1/γ describes the mean duration of the
infectious period; ϕ defines the fraction of individuals who are hospitalized with influenza; and 1/ρ describes
the average length of time for a hospital stay. [13]

In addition to the above ODE system, we append three ‘helper’ states that record the number of cumulative
incident: infections, reported ILI; and hospitalizations.

˙cI = 2σE2; ˙cILI+ = αγI; ˙cH = ϕγI

From the cumulative incident number ILI+ reports, and hospitalizations we can compute incident ILI+
reports and hospitalizations by taking first differences.

If the number of weeks starts at t = 1 and ends at t = T then we define the initial conditions for all eight
states (because we include ILI and the split-compartments E1 and E2) at time t = 0. This is so that after
taking first differences we arrive at T incident ILI reports and hospitalizations.

S St

E1 E2

IILI+ H

R

βSI τβStI

2σE1

2σE2

αγI

ϕγI

(1−
ϕ)γI

ρ

Ṡ = −β(t)SI

Ṡt = −τβ(t)StI

Ė1 = βI(S + τSt) −2σE1

Ė2 = 2σE1 −2σE2

İ = 2σE2 −γI

Ḣ = ϕγI −ρH

Ṙ = (1− ϕ)γI +ρH

FIG. (3) (Left) A flow diagram that presents how individuals move through disease states in this
dynamical system (right). Disease states are represented as circles. Rates are placed on arrows to describe
the rate at which individual move from one state to another. The ILI state is placed in a dashed circle

because this state is only an observed state that is used to inform prevalent infections (I).

III. INITIAL CONDITIONS

We need to estimate the initial proportions of seven disease states (plus the three helper states) without
observing these proportions in our collected dataset. In what follows, when we make reference to a disease
state value the reader should assume that this is the initial value that begins the system. In other words
the initial proportion of infected in this section is denoted I instead of I0. This is to ease notation.

To reduce the number of initial states to estimate, we assume that E1 = E1 = R = H = cH = cILI+ = 0.
We will assume that there exists a total proportion of susceptibles, Sttl = S + St, and that a proportion (v)
of these individuals are vaccinated or begin in the St compartment. This means that

St = vSttl; S = (1− v)Sttl.
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We placed Normal priors over the proportion of susceptibles Sttl on the logit scale as

logit (Sttl) ∼ N
(
logit

(
Ŝttl

)
, σS

)
.

where Ŝttl is a point estimate (see below section V titled Maximum likelihood estimates to support Bayesian
model). We could have decided to use a Beta density as a prior over the proportion of susceptibles. Our choice
to map the proportion of susceptibles to logit-space and use a Normal density is because this improved our
fit via variational inference (details on inference can be found below in Section VI titled Bayesian hierarchical
model).

We estimate the initial proportion of infections I as one minus the proportion of all susceptibles or

I = (1− Sttl).

We also set the initial proportion of cumulative incident infections, cI, equal to I. Then our final vector of
initial conditions is length 10 and equal to

(S, St, 0, 0, I, 0, 0, I, 0, 0)

where we have placed zeros for all states except for the susceptible and infected disease states. The pri-
mary reason we chose to set only four out of the ten initial conditions to positive values is to curb model
non-identifiability. Several different initial conditions for this dynamical system likely lead to the same log-
likelihood value. Rather than set arbitrary values for all ten disease states we attempted to constrain, as
much as possible, the range of initial conditions.

IV. FIXING EPIDEMIOLOGICAL PARAMETERS

The above dynamical system can produce the same vector of incident hospitalizations for numerous parameter
combinations, an issue called non-identifiability [14, 15]. Our choice of initial conditions is one approach for
reducing non-identifiability. An additional method to address non-identifiability is to fix specific parameters
in the above dynamical system based on previous literature about influenza dynamics. In support of these
fixed values, we find that our estimated reproduction numbers for all locations are in the interval one to two,
close to typical values found in past literature (See Figure 5 of reproduction numbers).

Parameter Fixed value Literary sources
1/γ 3/7 week [16, 17]
1/σ 2/7 of a week [17]
1/ρ 5/7 of a week [18, 19]

TABLE (I) To reduce issues of non-identifiability, we fixed the infectious period (1/γ) to three days; the
exposed period (1/e) to two days; the hospitalization period (1/ρ) to five days; and the initial proportion

of vaccinated individuals to fifty percent. Past literature to support these values are provided.

V. MAXIMUM LIKELIHOOD ESTIMATES TO SUPPORT BAYESIAN MODEL

In addition to the above parameters whose values are fixed, the following parameters are fit to ILI+ and
incident hospitalization data: Sttl, the total percent of susceptibles (both vaccinated and un-vaccinated);
β, the transmission rate; α, the proportion of infected individuals who are reported as an ILI+ case; ϕ the
proportion of individuals who are reported as hospitalized due to influenza. The model is fit using a Genetic
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algorithm with a population size of 10,000. [20] The loglikelihood that is maximized is defined as

ℓℓ(θ) =

S∑
s=1

T∑
t=1

log
[
Pois(hs,t|Nĥs,t)

]
+

S∑
s=1

T∑
t=1

log
[
BetaBinomial(ILIs,t|ζ ÎLIs,t, ζ

(
1− ÎLIs,t

)
,NILIs,t)

]
where the probability assigned to the observed number of incident hospitalizations hs,t in season s and week

t, given the fitted estimate ĥs,t and population size N equals

Pois(hs,t|Nĥs,t);

and where

BetaBinomial(ILI+s,t|ζ ÎLI+s,t, ζ
(
1− ÎLI+s,t

)
,NILI+s,t)

is the probability of observing ILI+s,t cases in season s and week t out of a total of NILI+s,t total patients,

given the model fitted number of observed ILI+ reports (ÎLI+s,t). Note the BetaBinomial has a concentration
parameter ζ. We set ζ to 100 so the model focuses both on hospitalizations and ILI data.

The model we assume is a simplified version of the full Bayesian model specified below. The maximum
likelihood estimates computed from this model will be used below to help set priors and serve as starting
points for the fuller Bayesian analysis.

VI. BAYESIAN HIERARCHICAL MODEL

We will describe our Bayesian specification in three parts: (1) how MLE estimates are used to shape pos-
terior parameter estimates; (2) how we build our data-driven time-dependent transmission rate; and (3) a
‘discrepancy’ term to account for a mis-specified dynamical system. [14, 21]

MLE estimates are used to define priors over the transmission rate, proportion of observed ILI+ reports,
proportion of observed hospitalizations, and the initial proportion of susceptible individuals.

σβ ∼ Half-Cauchy(10); log (β0) ∼ N (β0,mle, σβ)

σβs ∼ Half-Cauchy(1); log (β0,s) ∼ N (log (β0) , σβs)

σϕ ∼ Half-Cauchy(10); logit (ϕ) ∼ N (ϕmle, σϕ)

σα ∼ Half-Cauchy(10); log (α) ∼ N (αmle, σα)

logit(Sttl) ∼ N (Sttl,mle, 10)

S0 = (1− ν)Sttl; St = νSttl

I0 = (1− Sttl)

Parameters that are defined to be positive are sampled on log scale and parameters defined on the unit interval
are sampled on the logit scale. Note that the intercept for transmission rates, β0, is defined hierarchically
across seasons. This assumes that the baseline transmission across influenza seasons is similar—though not
exactly the same. Below, we add to this baseline transmission rate two season-specific covariates.

To incorporate vaccine effectiveness data from MMWR [3], we assume that the reduction in transmission for
vaccinated individuals is equal to the estimated vaccine effectiveness for that season

τs = VEMMWR,s

For our (yet unseen to the model) 2023/34 season, we set τ to be the mean of all collected vaccine effectiveness
values. This is a simplifying assumption and a more rigorous approach may be to first propose a density
over these values from which to to sample.
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To incorporate into the model climate data from NOAA, we assume that the transmission rate is a function
of temperature, temp, pressure pres as

log(βs,t) = log(β0,s) + b1temps,t + b2press,t

Note that the term log(β0,s) was defined above and links transmission rates across seasons. We did not
include an additional ‘error’ term in the above time-dependent transmission rate in order to emphasize the
data-driven component of the model. An error term could be included and may improve model fit.

The above prior densities are used to produce a set of S (one per season) model-proposed trajectories for

weekly incident ILI+ reports ÎLIs,t and incident hospitalizations ĥs,t. The ODE system was integrated by
Euler’s method with a step size of 1/7 (i.e. on the scale of one day). Integration took place in diffrax. [22]

The current model is similar to a state-space model where the latent, disease states are deterministic. To
add noise that should be propagated forward in time, we assume that the number of incident hospitalizations
is sampled from a Gaussian Process with covariance function equal to Brownian motion.

logit (h∗s,t) ∼ MVN(ĥs,t,K(t1, t2, ω))

µ ∼ Beta(1, 1); η ∼ LogNormal(0, 1)

ωs ∼ LogNormal(µ, η)

Ks(t1, t2) = ωs min(t1, t2)

where MVN is a Multivariate Gaussian Density. Note that ω, the dispersion for Brownian motion, is defined
hierarchically over seasons. Then the log likelihood is calibrated to both incident hospitalization data and
ILI+ data:

ζ ∼ Half-Cauchy(1)

ℓℓ(θ) =

S∑
s=1

T∑
t=1

log [Negative Binomial(hs,t|Nh∗s,t, 50)]+

S∑
s=1

T∑
t=1

log
[
BetaBinomial(ILIs,t|ζ ˆILIs,t, ζ

(
1− ˆILIs,t

)
,NILIs,t)

]
Rather than use the stricter Poisson density for incident hospitalizations, we chose a Negative Binomial
density with mean Nh∗s,t and concentration 50. [23] The Negative Binomial with an infinite concentra-
tion is equivalent to a Poisson density, and so our choice here allows for over-dispersion in the collected
hospitalization data.

The fully specified Bayesian model is fit using stochastic Variational inference. [24] Numpyro was used to
implement this model. [25] We used a Normal density with diagonal covariance matrix as the ‘guide’ or
approximate density. We chose Adam as the optimizer with a step size of 0.001 and ran the VI algorithm
2 × 104 iterations. This implementation led to a decreasing ELBO and very little change after 2 × 104

iterations.

VII. FORECAST

A forecast is generated by sampling from the estimated posterior density that was computed with Varia-
tional inference. This sampling procedure does not take into account variation in the, yet unseen, covariate
data. Instead we assume that the covariate data for the upcoming data is the average over past seasons—a
simplifying assumption. Forecasts from 1-32 weeks ahead are generated and 23 quantiles are computed that
are the same quantiles as requested by the CDC FluSight challenge. [26].
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VIII. FORECAST EVALUATION

As a formal evaluation, we compared the weighted interval score (WIS) and the absolute error (AE) between
the median forecast and true number of US national incident hospitalizations for all forecast horizons (See
Figure 4). For both the WIS and AE, smaller values indicate a better performing model [27]. For all forecast
horizons, and with both evaluation metrics, the transmission model trained on all data sources (Fig. 4 blue)
outperforms the model trained only on NHSN data (Fig. 4 red).
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FIG. (4) A comparison of (Left) the weighted interval score and (Right) the absolute error between the
median forecast and truth for 1-32 week ahead forecasts of US national incident hospitalizations for two

models: (blue) the model trained with all data sources and (red) the model trained with only NHSN data.

IX. TIME-DEPENDENT EFFECTIVE TRANSMISSION RATE

The time-dependent transmission rate depends on the average temperature and pressure data from
NOAA (See Figure 5). From the transmission rate we can compute the effective reproduction number
as

Reff = β(t)(1 + τ)

(
1

γ

)
As expected, for the red model that assumes a constant transmission, the average effective reproduction
number is 1.6—consistent with past influenza modeling efforts. [28] For the blue model, the effective re-
production number is highest at the beginning of the season. Then the rate drops, still within reasonable
estimates for influenza, to values as low as 1.2. The uncertainty around this value is small, and should be
corrected with a more advanced model.

X. DATA AVAILABILITY, MODEL CODE, AND REPRODUCIBLE PIPELINE

The data, model code are available at GitHub at https://github.com/computationalUncertaintyLab/i
mportance_of_data. A Makefile can be used to run the code and produce model data and all the figures
presented in the main manuscript. This makes clear what data was used, how it was used, and how the data
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was mapped to a US national forecast for the entire 2023/24 season. Comments or questions on the code
can be either emailed to the corresponding author or submitted directly on the above GitHub link.
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FIG. (5) Mean and 95% uncertainty interval for the time-dependent transmission rate β(t) for the model
trained on all data sources (blue) and model trained only on NHSN (red). The time dependent

transmission is defined over all 32 weeks and depends on the average temperature and pressure data from
NOAA (via meteostat).
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